Abstract

A direct method for determining powder diffraction data at specific depths from angle-dependent diffraction data is described. The method is non-destructive and only traditional data collections, where the angle of incidence is varied, are required. These angle-dependent spectra are transformed to give diffraction data arising from different depths, which may then be exploited using any conventional method. This is a novel approach as traditional methods are forced to tolerate the inherent depth averaging of grazing-angle diffraction, or only examine specific structural characteristics. In order to obtain depth-dependent X-ray diffraction data, a Fredholm integral equation of the first kind is solved using regularization techniques. The method has been validated by the generation of pseudo-experimental data having known depth profiles and solving the Fredholm integral equation to recover the solution. The method has also been applied to experimental data from a number of thin film systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.