Abstract

This study explored lifestyle and biological determinants of peak fat oxidation (PFO) during cycle ergometry, using duplicate measures to account for day-to-day variation. Seventy-three healthy adults (age range: 19-63 years; peak oxygen consumption [V˙O2peak]: 42.4 [10.1] ml·kg BM-1·min-1; n = 32 women]) completed trials 7-28 days apart that assessed resting metabolic rate, a resting venous blood sample, and PFO by indirect calorimetry during an incremental cycling test. Habitual physical activity (combined heart rate accelerometer) and dietary intake (weighed record) were assessed before the first trial. Body composition was assessed 2-7 days after the second identical trial by dual-energy X-ray absorptiometry scan. Multiple linear regressions were performed to identify determinants of PFO (mean of two cycle tests). A total variance of 79% in absolute PFO (g·min-1) was explained with positive coefficients for V˙O2peak (strongest predictor), FATmax (i.e the % of V˙O2peak that PFO occurred at), and resting fat oxidation rate (g·min-1), and negative coefficients for body fat mass (kg) and habitual physical activity level. When expressed relative to fat-free mass, 64% of variance in PFO was explained: positive coefficients for FATmax (strongest predictor), V˙O2peak, and resting fat oxidation rate, and negative coefficients for male sex and fat mass. This duplicate design revealed that biological and lifestyle factors explain a large proportion of variance in PFO during incremental cycling. After accounting for day-to-day variation in PFO, V˙O2peak and FATmax were strong and consistent predictors of PFO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.