Abstract

Ecologists have long recognized that factors operating at both local and regional scales influence whether a given species occurs in an ecological community. The relative roles of variables manifested at local and regional scales on community structure, however, remain an unexplored issue for many faunas. To address this question, we compared the community composition and species diversity of forest Lepidoptera between (i) large forest tracts in historically glaciated and unglaciated regions of the eastern deciduous forest in North America, and (ii) large and small forest patches within a highly fragmented forest landscape. Specifically, we used seasonally stratified sampling to test whether regional and local differences in moth communities were related to variation in stand structure and floristic composition. At the local scale, we tested three alternative hypotheses describing the effects of patch size on moth species richness: species impoverishment, species replacement, or species supplementation.Cluster analysis revealed significant compositional differences in moth communities sampled between (i) early and late seasons, (ii) glaciated and unglaciated forest eco‐regions, and (iii) large and small forest patches. Canonical correspondence analysis suggested that floristic variation at regional scales had a greater role in determining moth community composition than local vegetation or patch‐size effects. Species richness was higher in the glaciated North Central Tillplain, and was attributable to a more diverse herbaceous feeding moth assemblage. Finally, we found evidence that both species impoverishment and species replacement processes structure the moth fauna of small woodlots; the richness of moths with larvae that feed on woody plants decreased with patch area, but herbaceous feeding species increased in diversity in smaller patches. Thus, our results suggest that local and regional differences in moth community structure are mediated by differences in host‐plant resources attributable to regional biogeographic history and local differences in patch size. Because community composition appeared to be more sensitive to environmental variation than species richness, we suggest that monitoring lepidopteran species diversity in forests will not detect significant changes in species composition due to environmental change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.