Abstract
We consider the Hamiltonian cycle problem on a given graph $G$. With such a graph we can associate a family $\mathcal{F}$ of probability transition matrices of Markov chains whose entries represent the probabilities of traversing corresponding arcs of the graph. When the underlying graph is Hamiltonian, we show the transition probability matrix induced by a Hamiltonian cycle maximizes—over $\mathcal{F}$—the determinant of a matrix that is a rank-one correction of the generator matrix of a Markov chain. In the case when the graph does not possess a Hamiltonian cycle, the above maximization yields a transition matrix of a chain with a longest simple cycle (in $G$) comprising that chain's unique ergodic class. These problems also have analogous eigenvalue interpretations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.