Abstract
The dynamics of integer-order Cohen-Grossberg neural networks with time delays haslatelydrawn tremendous attention. It reveals that fractional calculus plays a crucial role oninfluencing the dynamical behaviors of neural networks(NNs). This paper deals with the problem of the stability and bifurcation of fractional-order Cohen-Grossberg neural networks (FOCGNNs) with two different leakage delay and communication delay. The bifurcation results with regard to leakage delay are firstly gained. Then, communication delay is viewed as a bifurcation parameter to detect the critical values of bifurcations for the addressed FOCGNN, and the communication delay induced-bifurcation conditions are procured. We further discover that fractional orders can enlarge(reduce) stability regions of the addressed FOCGNN. Furthermore, we discover that, for the same system parameters, the convergence time to the equilibrium point of FONN is shorter(longer) than that of integer-order NNs. In this paper, the present methodology to handle the characteristic equation with triple transcendental terms in delayed FOCGNNs is concise, neoteric and flexible in contrast with the prior mechanisms owing to skillfullykeeping away from theintricate classified discussions. Eventually, the developedanalyticresults are nicelyshowcased by the simulation examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.