Abstract
To address the issue of the low precision in detecting defects in aluminum alloy weld seam digital radiography (DR) images using the current target detection algorithms, a modified algorithm named YOLOv8-ELA based on YOLOv8 is proposed. The model integrates a novel HS-FPN feature fusion module, which optimizes the parameter efficiency and enhances the detection performance. For better identification of small defect features, the CA attention mechanism within HS-FPN is substituted with the ELA attention mechanism. Additionally, the first output layer is enhanced with a SimAM attention mechanism to improve the small target recognition. The experimental findings indicate that, at a 0.5 threshold, the YOLOv8-ELA model achieves mean average precision (mAP@0.5) values of 93.3%, 96.4%, and 96.5% for detecting pores, inclusions, and incomplete welds, respectively. These values surpass those of the original YOLOv8 model by 1.4, 2.3, and 0.1 percentage points. Overall, the model attains an average mAP of 95.4%, marking a 1.3% improvement over its predecessor, confirming its superior defect detection capabilities.
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have