Abstract

Theoretical analysis revealed that experimental results obtained in our studies on hypersound propagation in a guaiacol-glycerol solution in the vicinity of the closed phase-separation region, double critical point, and special point, as well as the origin of these regions, can be explained by the presence of two different phases (I and II) of the solution with phase-transition temperature T0. Temperature T0 coincides with the temperature at the center of closed phase-separation regions, as well as with the double critical point and with the special point. In (Frenkel) phase I, molecules are in potential wells whose depth exceeds the thermal energy of a molecule, while thermal energy in (gaslike) phase II is higher than the potential well depth. At the lower critical point, the thermodynamic potential of phase I is equal to the thermodynamic potential of the phase-separated solution. At the upper critical point, the thermodynamic potential of phase II is equal to the thermodynamic potential of the phase-separated solution. The observed broad dome of the hypersound absorption coefficient near T0 can be explained by the contribution associated with fluctuations of the order parameter corresponding to the transition from phase I to phase II. The difference in the temperature coefficients of hypersound velocity on different sides of T0 and some other effects are also explained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.