Abstract
An optical fiber interferometer has been developed for the detection of ultrasonic waves in solids. The optical paths in both the signal and reference arms of the Mach-Zehnder interferometer are through the cores of similar lengths of single mode fiber mode stripped at both input and output. Light emerging from the output ends of the reference fiber and a signal fiber which was embedded in a 2.54-cm disc of plastic resin 1.1-cm thick was superimposed to form a straight line interference pattern. Instantaneous translation of the pattern is proportional to the localized strain produced by ultrasonic bulk waves generated in the disc and integrated along the fiber path. By spatially filtering the moving fringe pattern and synchronously demodulating the filtered optical intensity distribution, a signal proportional to the integrated strain is obtained. Direct calibration at dc indicates a minimum theoretical detectable strain of less than
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.