Abstract

Turmeric (Curcuma longa; TM) is widely used as a spice and possesses anti-inflammatory, antioxidant, and antibacterial properties. The relationship between TM functions and gut microbiota is still unclear. To investigate the effect of TM on gut microbiota and to identify indigenous gut bacteria that are responsive to TM, we fed Institute of Cancer Research mice a diet containing either no fibre (NF, n = 6) or 5% (w/w) TM (n = 6) for 14days. Moreover, we obtained human stool samples from four healthy volunteers and incubated the samples without (control) or with 2% (w/v) TM at 37°C for 24h. Subsequently, microbiota analysis in murine caecal samples and human faecal cultures was performed using 16S rRNA (V4) amplicon sequencing. Higher faecal weights (p < 0.01) and lower plasma triacylglycerol levels (p < 0.05) were measured in the TM-fed mice than in the NF-fed mice. Furthermore, TM feeding increased the abundance of butyrate-producing and other short-chain fatty acid (SCFA)-producing bacteria in mice as well as in human faecal cultures, and Roseburia bacteria were detected as TM-responsive indigenous gut bacteria (TM-RIB) both in mice and in human faecal cultures. Lastly, in the case of human faecal cultures, SCFA contents and antioxidant properties were higher in TM cultures than in control cultures (p < 0.05). TM appears to hold the potential to positively affect the host by altering the gut microbiota. Further studies are required to clarify the synergistic effects of TM and TM-RIB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call