Abstract

A multi-layer resistance based compliant tactile sensor was fabricated using direct-print (DP) and soft molding processes. The sensor consists of two layers of embedded stretchable sensing elements sandwiched by three layers of a polyurethane rubber material. The sensing elements were created by the DP process using a photopolymer filled with multi-wall carbon nanotubes, which exhibit the property of piezoresistivity. The printed sensing elements were fully cured using ultraviolet light. The sensing elements within each layer of the sensor structure change in electrical resistance when external forces are applied. By processing the measured sensor signals, the fabricated sensor was able to detect the position of contact forces with a 3 mm spatial resolution, as well as their two-dimensional translation directions and speeds. Based on the results, it is concluded that the fabricated sensors are promising in robotic applications and the developed process and material can be a reliable and robust way to build highly stretchable tactile sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.