Abstract

Aim:This review gives an outline of the assessment of enterotoxigenic Staphylococcus aureus tainting levels in raw milk from different sources in Egypt and characterization of enterotoxigenic strains utilizing a technique in light of PCR to identify genes coding for the production of staphylococcal enterotoxin (SE). The obtained data were compared with results from the application of the reversed passive latex.Materials and Methods:Multiplex PCR and reversed passive latex agglutination (RPLA) were used. A total of 141 samples of raw milk (cow’s milk=33, buffalo’s milk=58, and bulk tank milk=50) were investigated for S. aureus contamination and tested for enterotoxin genes presence and toxin production.Results:S. aureus was detected in 23 (16.3%) samples phenotypically and genotypically by amplification of nuc gene. The S. aureus isolates were investigated for SEs genes (sea to see) by multiplex PCR and the toxin production by these isolates was screened by RPLA. SEs genes were detected in six isolates (26.1%) molecularly; see was the most observed gene where detected in all isolates, two isolates harbored seb, and two isolates harbored sec. According to RPLA, three isolates produced SEB and SEC.Conclusion:The study revealed the widespread of S. aureus strains caring genes coding for toxins. The real significance of the presence of these strains or its toxins in raw milk and their possible impact a potential hazard for staphylococcal food poisoning by raw milk consumption. Therefore, detection of enterotoxigenic S. aureus strains in raw milk is necessary for consumer safety.

Highlights

  • The tracking of sentinel health events to detect and manage disease risks facing a human population is an important mission

  • The S. aureus isolates were investigated for staphylococcal enterotoxin (SE) genes by multiplex polymerase chain reaction (PCR) and the toxin production by these isolates was screened by reversed passive latex agglutination (RPLA)

  • This study revealed the widespread of S. aureus strains caring genes coding for toxins

Read more

Summary

Introduction

The tracking of sentinel health events to detect and manage disease risks facing a human population is an important mission. The full potential of linking animal and human health information to provide warning of such “shared risks” from environmental hazards has not been realized [1]. Animal or food of animal origin acting as a potential human health hazard [2,3,4,5]. The Creative Commons Public Domain Dedication waiver (http:// creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.