Abstract

The detection of SARS-CoV-2 infection is crucial for effective prevention and surveillance of COVID-19. In this study, we report the development of a novel detection assay named CENSOR that enables sensitive and specific detection of SARS-CoV-2 RNA using a plasmonic chiral biosensor in combination with CRISPR-Cas13a. The chiral biosensor was designed by assembling gold nanorods (AuNR) into three-dimensional plasmonic architectures of controllable chirality on a DNA origami template. This modular assembly mode enhances the flexibility and adaptability of the sensor, thereby improving its universality as a sensing platform. In the presence of SARS-CoV-2 RNA, the CRISPR-Cas13a enzyme triggers collateral cleavage of RNA molecules, resulting in a differential chiral signal readout by the biosensor compared to when there are no RNA targets present. Notably, even subtle variations in the concentration of SARS-CoV-2 RNA can provoke significant changes in chiral signals after preamplification of RNA targets (calculated LOD: 0.133 aM), which establishes the foundation for quantitative detection. Furthermore, CENSOR demonstrated high sensitivity and accuracy in detecting SARS-CoV-2 RNA from clinical samples, suggesting its potential application in clinical settings for viral detection beyond SARS-CoV-2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.