Abstract

Fetal Alcohol Spectrum Disorder (FASD), a wide range of physical and neurobehavioral abnormalities associated with prenatal alcohol exposure (PAE), is recognized as a significant public health concern. Advancements in the diagnosis of FASD have been hindered by a lack of consensus in diagnostic criteria and limited use of objective biomarkers. Previous research from our group utilized resting-state functional magnetic resonance imaging (fMRI) to measure functional network connectivity (FNC), which revealed several sex- and region-dependent alterations in FNC as a result of moderate PAE relative to controls. Considering that FNC is sensitive to moderate PAE, this study explored the use of FNC data and machine learning methods to detect PAE among a sample of rodents exposed to alcohol prenatally and controls. We utilized previously acquired resting state fMRI data collected from adult rats exposed to moderate levels of prenatal alcohol (PAE) or a saccharin control solution (SAC) to assess FNC of resting state networks extracted by spatial group independent component analysis (GICA). FNC data were subjected to binary classification using support vector machine (SVM) -based algorithms and leave-one-out-cross validation (LOOCV) in an aggregated sample of males and females (n=48; 12 male PAE, 12 female PAE, 12 male SAC, 12 female SAC), a males-only sample (n=24; 12 PAE, 12 SAC), and a females-only sample (n=24; 12 PAE, 12 SAC). Results revealed that a quadratic SVM (QSVM) kernel was significantly effective for PAE detection in females. QSVM kernel-based classification resulted in accuracy rates of 62.5% for all animals, 58.3% for males, and 79.2% for females. Additionally, qualitative evaluation of QSVM weights implicates an overarching theme of several hippocampal and cortical networks in contributing to the formation of correct classification decisions by QSVM. Our results suggest that binary classification using QSVM and adult female FNC data is a potential candidate for the translational development of novel and non-invasive techniques for the identification of FASD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.