Abstract

Parkinson's disease is a neurodegenerative disorder impacting patients' movement, causing a variety of movement abnormalities. It has been the focus of research studies for early detection based on wearable technologies. The benefit of wearable technologies in the domain rises by continuous monitoring of this population's movement patterns over time. The ubiquity of wrist-worn accelerometry and the fact that the wrist is the most common and acceptable body location to wear the accelerometer for continuous monitoring suggests that wrist-worn accelerometers are the best choice for early detection of the disease and also tracking the severity of it over time. In this study, we use a dataset consisting of one-week wrist-worn accelerometry data collected from individuals with Parkinson's disease and healthy elderlies for early detection of the disease. Two feature engineering methods, including epoch-based statistical feature engineering and the document-of-words method, were used. Using various machine learning classifiers, the impact of different windowing strategies, using the document-of-words method versus the statistical method, and the amount of data in terms of number of days were investigated. Based on our results, PD was detected with the highest average accuracy value (85% ± 15%) across 100 runs of SVM classifier using a set of features containing features from every and all windowing strategies. We also found that the document-of-words method significantly improves the classification performance compared to the statistical feature engineering model. Although the best performance of the classification task between PD and healthy elderlies was obtained using seven days of data collection, the results indicated that with three days of data collection, we can reach a classification performance that is not significantly different from a model built using seven days of data collection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.