Abstract

We study the stability of asymptotic states displayed by a complex neural network. We focus on the loss of stability of a stationary state of networks using recurrence quantifiers as tools to diagnose local and global stabilities as well as the multistability of a coupled neural network. Numerical simulations of a neural network composed of 1024 neurons in a small-world connection scheme are performed using the model of Braun etal. [Int. J. Bifurcation Chaos 08, 881 (1998)IJBEE40218-127410.1142/S0218127498000681], which is a modified model from the Hodgkin-Huxley model [J. Phys. 117, 500 (1952)]. To validate the analyses, the results are compared with those produced by Kuramoto's order parameter [Chemical Oscillations, Waves, and Turbulence (Springer-Verlag, Berlin Heidelberg, 1984)]. We show that recurrence tools making use of just integrated signals provided by the networks, such as local field potential (LFP) (LFP signals) or mean field values bring new results on the understanding of neural behavior occurring before the synchronization states. In particular we show the occurrence of different stationary and nonstationarity asymptotic states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.