Abstract

Nanocrystalline porous silicon (PSi) surfaces have been used to detect nitroaromatic compounds in vapor phase. The mode of photoluminescence (PL) is emphasized as a sensing attitude or detection technique. Quenching of PL from nanocrystalline porous surfaces as a transduction mode is measured upon the exposure of nitroaromatic compounds. To verify the detection of explosives, the surface of PSi is functionalized with different groups. The quenching mechanism of PL is attributed to the electron transfer behaviors of quantum-sized nano-crystallites in the PSi matrix to the analytes (nitroaromatics). An attempt has been done to prove that the surface-derivatized photoluminescent PSi surfaces can act as versatile substrates for sensing behaviors due to having a large surface area and highly sensitive transduction mode.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.