Abstract

The presence of mouth alcohol (MA) during alcohol breath test for law enforcement is the most common cause of falsely high breath alcohol concentrations (BrAC). A fast and reliable test for detection of MA roadside at the scene of the act would facilitate the police efforts for proper prosecution. A tentative technique to use orally exhaled water vapour as a reference gas to position the origin of alcohol was validated. BrAC and water vapour concentration (WVC) were simultaneously measured as a known MA component was added to subjects with existing blood alcohol. In the absence of MA, water always precedes alcohol in a volumetric expirogram. In the presence of MA this relationship reversed. A scatterplot of WVC versus BrAC from similar fractional exhaled volumes illustrates how their relative positions change by MA. A deviation area (DA) between the scatterplot curve and a fictitious linear relationship was defined as a measurement of MA. The accuracy and cut-off level of the DA to detect MA were determined with receiver operating characteristic (ROC) curve analysis. The area under the ROC curve (AUC) was 0.95 (95% CI 0.90–1.0), indicating excellent discriminatory ability. The optimal cut-off for DA to discriminate between MA ≥0.010mg/L (1μg/100ml, 0.002g/210L) or lack of MA was −0.35, with a sensitivity of 0.91 and specificity of 0.95.Analysis of BrAC in relation to WVC is a practical method to detect and confirm MA contamination with high reliability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.