Abstract

Abstract It is required that the laser beam focus should be controlled to accurately follow the weld joint center during laser butt joint welding; therefore, the weld joint position must be detected automatically in real-time. An approach for detecting the micro-weld joint (weld gap less than 0.1 mm) based on magneto-optical (MO) imaging is investigated during laser butt-joint welding of low carbon steel. Magneto-optical sensor was used to capture the dynamic images of weld joint. Weld MO image gray distribution features were analyzed to extract the transition zone of weld joint. The influences of a different magnetic field intensity and the welding speed on detecting the weld joint position were mainly studied. Under different welding conditions where welding path, weld gap or welding speed varies, it has been found that using magneto-optic imaging technology could effectively detect the position of the micro-weld joint. Different weld joint positions in MO images have been detected with various magnetic field intensities. Experimental results show that the welding speed has little influence on the detection of weld joint position.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.