Abstract

Aiming at the real-time detection of the impurity rate in machine-picked cotton processing, a detection method for the impurity rate in machine-picked cotton was proposed based on an improved Canny operator. According to the characteristics of different saturations between cotton and impurities, the impurities were separated by extracting the image S channel. Due to problems existing in the traditional Canny operator’s edge detection, the Gaussian filter was replaced by employing mean filtering and nonlocal mean denoising, which could effectively remove the noise in the image. A YOLO V5 neural network was used to classify and identify the impurities after segmentation, and the densities of various impurities were measured. The volume–weight (V–W) model was established to solve the impurity rate based on mass. Compared with a single thread, the data processing time was shortened by 43.65%, and the frame rate was effectively improved by using multithread technology. By solving the average value of the impurity rate, the anti-interference performance of the algorithm was enhanced, and has the characteristics of real-time detection and stability. This method solved the problems of low speed, poor real-time detection, and ease of interference, and can be used to guide the cotton production process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.