We observed the HH24-26 region in the L1630 Orion molecular cloud complex with the X-ray observatory ASCA in the 0.5$-$10 keV band. X-ray emission was detected from the T Tauri star SSV61 and from the region where the Class I protostars SSV63E and SSV63W are located (hereafter SSV63E+W). The spectra of both SSV63E+W and SSV61 are well explained by an optically thin thermal plasma model. The spectrum of the T Tauri star SSV61 has a low temperature of $kT=0.9$ (0.7$-$1.2) keV and a moderate absorption of $N_{\rm{H}}=1.3$ (0.9$-$1.7) $\times10^{22}$ cm$^{-2}$, while that of the protostar SSV63E+W has a high temperature of $kT=5.0$ (3.3$-$7.9) keV and a heavy absorption of $N_{\rm{H}}=1.5$ (1.2$-$1.8) $\times10^{23}$ cm$^{-2}$. The X-ray light curve of SSV63E+W showed a flare during the observation. The peak flux reached about 9 times that of the quiescent flux. The temperature and the absorption column density do not change conspicuously during the flare. The 0.5$-$10 keV luminosity of SSV63E+W was about $1\times10^{32}$ erg s$^{-1}$ in the quiescent state. The present detection of hard X-rays from SSV63E+W is remarkable, because this is the first X-ray detection of a protostar in Orion.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call