Abstract

The demand for nondestructive testing has increased, especially in welding testing. In the current study, AA1060 aluminum plates were jointed using the friction stir welding (FSW) process. The fabricated joints were subjected to free vibration impact testing in order to investigate the dynamic properties of the welded joint. Damping capacity and dynamic modulus were used in the new prediction method to detect FSW defects. The data acquired were processed and analyzed using a dynamic pulse analyzer lab shop and ME’Scope’s post-processing software, respectively. A finite element analysis using ANSYS software was conducted on different types of designed defects to predict the natural frequency. The results revealed that defective welded joints significantly affect the specific damping capacity. As the damping ratio increased, so did the indication of opportunities to increase the presence of defects. The finite element simulation model was consistent with experimental work. It was therefore revealed that natural frequency was insufficient to predict smaller defects.

Highlights

  • Friction stir welding (FSW) and processing is an advanced technique used for the joining and fabrication of aluminum alloys

  • Were used to verify the estimated dynamic properties, such as the damping ratio and natural weredamping used to capacity verify the estimated such as the damping ratio and

  • We concluded that the friction stir welding (FSW) processing parameters affect the dynamic properties of the welded joint, according to the heat generated due to the stirring action and different processing conditions

Read more

Summary

Introduction

Friction stir welding (FSW) and processing is an advanced technique used for the joining and fabrication of aluminum alloys. As a result of different processing parameters, such as welding speed and tool shape, discontinuities occur in welded joints, including channel cavities and porosities. Many researchers have studied weld defects and their classification [1,2,3,4,5,6,7,8]. The quality of FSW depends on the speed of the rotating welding tool as the source of input heat in the process. The formation of tunnels, wormholes, and voids in the welded joint is caused by insufficient heat input and deficiencies in the material flow [14,15,16]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.