Abstract

Flashlight fishes of the family Anomalopidae live in clear tropical waters and are nocturnally active. They have luminescent organs located just below the pupils of their eyes. The relation of the luminescent organ to the pupil of the anomalopid eye is similar to that of the illumination and pupil system of the ophthalmoscope and identical to that of some photoretinoscopes. Indeed, one species of flashlight fish, Anomalops katoptron, actually moves its luminous organ away from its pupils in the process of occluding its light organ, making a retinoscopic-Iike movement. By photographing the eyeshine of a number of fishes with a photoretinoscope and by analyzing the optics of light organs of fish of the family Anomalopidae as well as the optics of reflecting eyes, we show under what light conditions and ranges flashlight fishes may reasonably be able to detect eyeshine from other fishes in the environment. Further, we suggest that flashlight fishes may be able to communicate with each other by altering the accommodation of their eyes. In such a communication system, the sender radiates no energy and communicates only with the interrogating receiver of the information. To our knowledge, this utilization of eyeshine, both for detection and for communication, is unique in the animal kingdom.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.