Abstract

Measurements of time-resolved autofluorescence (FLIM) at the human ocular fundus of diabetic patients permit the detection of early pathologic alterations before signs of diabetic retinopathy are visible. The measurements were performed by the Jena Fluorescence Lifetime Laser Scanner Ophthalmoscope applying time-correlated single photon counting (TCSPC) in two spectral channels (K1: 490–560 nm, K2:560–700ps). The fluorescence was excited by 70 ps pulses (FWHM) at 448 nm. The decay of fluorescence intensity was triple-exponentially approximated. The frequency of amplitudes, lifetimes, and relative contributions was compared in fields of the same size and position in healthy subjects and in diabetic patients. The most sensitive parameter was the lifetime T2 in the short-wavelength channel, which corresponds to the neuronal retina. The changes in lifetime point to a loss of free NADH and an increased contribution of protein-bound NADH in the pre-stage of diabetic retinopathy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.