Abstract

An 82-base-pair polymerase chain reaction (PCR) product was amplified from the tetranucleotide short tandem repeat locus within the human tyrosine hydroxylase gene. PCR amplification was carried out using 100 ng of human nuclear DNA obtained from an individual who is homozygotic for the 9.3 allele resulting in a 50.5 kDa amplicon. To generate sufficient material for these investigations, several reactions were pooled and subsequently purified and quantified using UV-vis spectrophotometry. A serial dilution was carried out from a 2 microM stock solution providing solution concentrations down to 5 nM. Measurements were made using hexapole accumulation and gated trapping strategies in a 4.7 Telsa Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS) which facilitated detection of the amplicon at the attomole level when electrosprayed from a 5 nM solution with a single acquisition! The signal-to-noise ratio was determined to be 8.3 for the spectrum derived from the 5 nM solution using the magnitude-mode mass spectral peak height for the most abundant charge-state. This remarkable sensitivity for large PCR amplicons will dramatically improve the ability of electrospray ionization mass spectrometry to address important genetic questions for low copy number genes or when the amount of initial template is limited; the latter issue is commonly encountered in DNA forensics. Furthermore, these data represents over 2 orders of magnitude decrease in detection limits over other existing ESI-MS reports concerning PCR products, including those conducted using FTICR-MS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.