Abstract
Plant diseases have a negative impact on the agricultural sector. The diseases lower the productivity of the production yield and give huge losses to the farmers. For the betterment of agriculture, it is very essential to detect the diseases in the plants to protect the agricultural crop yield while it is also important to reduce the use of pesticides to improve the quality of the agricultural yield. Image processing and data mining algorithms together help analyze and detection of diseases. Using these techniques diseases detection can be done in rice leaves. In this research, the image processing technique is used to extract the feature from the leaf images. Further for the classification of diseases various machine learning algorithm like the random forest, J48 and support vector machine is used and the result is compared among different machine learning algorithm. After model evaluation, classification accuracy is verified using the n-fold cross-validation technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.