Abstract
Given a time series of data points, as obtained in biosignal monitoring, the change point problem poses the question of identifying times of sudden variations in the parameters of the underlying data distribution. We propose a method for extracting a discrete set of change points from directional data. Our method is based on a combination of the Bayesian change point model (CPM) and the Viterbi algorithm. We apply our method to the instantaneous phase information of single-trial auditory event-related potentials (ERPs) in a long term habituation paradigm. We have seen in previous studies that the phase information enters a phase-locked mode with respect to the repetition of a stimulus in the state of focused attention. With adaptation to an insignificant stimulus, attention tends to trail away (long-term habituation), characterized by changes in the phase signature, becoming more diffuse across trials. We demonstrate that the proposed method is suitable for detecting the effects of long-term habituation on phase information in our experimental setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.