Abstract
PurposeThis paper presents a novel method for identifying damage in reinforced concrete (RC) bridges, utilizing macro-strain data from distributed long-gauge sensors installed on the concrete surface.Design/methodology/approachThe method relies on the principle that heavy vehicles induce larger dynamic vibrations, leading to increased strain and crack formation compared to lighter vehicles. By comparing the absolute macro-strain ratio (AMSR) of a reference sensor with a network of distributed sensors, damage locations can be effectively pinpointed from a single data collection session. Finite-element modeling was employed to validate the method's efficacy, demonstrating that the AMSR ratio increases significantly in the presence of cracks. Experimental validation was conducted on a real-world bridge in Japan, confirming the method's reliability under normal traffic conditions.FindingsThis approach offers a practical and efficient means of detecting bridge damage, potentially enhancing the safety and longevity of infrastructure systems.Originality/valueOriginal research paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.