Abstract

Abstract PeVatrons are the most powerful naturally occurring particle accelerators in the Universe. The identification of counterparts associated to astrophysical objects such as dying massive stars, molecular gas, star-forming regions, and star clusters is essential to clarify the underlying nature of the PeV emission, i.e., hadronic or leptonic. We present 12,13CO (J = 2→1) observations made with the 1.85 m radio-telescope of the Osaka Prefecture University toward the Cygnus OB7 molecular cloud, which contains the PeVatron candidate LHAASO J2108+5157. We investigate the nature of the sub-PeV (gamma-ray) emission by studying the nucleon density determined from the content of H i and H2, derived from the CO observations. In addition to MML[2017]4607, detected via the observations of the optically thick 12CO (J = 1→0) emission, we infer the presence of an optically thin molecular cloud, named [FKT-MC]2022, whose angular size is 1${_{.}^{\circ}}$1 ± 0${_{.}^{\circ}}$2. We propose this cloud as a new candidate to produce the sub-PeV emission observed in LHAASO J2108+5157. Considering a distance of 1.7 kpc, we estimate a nucleon (H i + H2) density of 37 ± 14 cm−3, and a total nucleon mass(H i + H2) of 1.5 ± 0.6 × 104 M⊙. On the other hand, we confirm that Kronberger 82 is a molecular clump with an angular size of 0${_{.}^{\circ}}$1, a nucleon density ∼103 cm−3, and a mass ∼103 M⊙. Although Kronberger 82 hosts the physical conditions to produce the observed emission of LHAASO J2108+5157, [FKT-MC]2022 is located closer to it, suggesting that the latter could be the one associated to the sub-PeV emission. Under this scenario, our results favour a hadronic origin for the emission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.