Abstract

Imperatorin, a furanocoumarin that widely exists in many umbelliferous herbs, has been demonstrated to have a variety of pharmacological effects, including anti-inflammatory, antiosteoporosis, and antitumor activities. The purpose of this study was to investigate the metabolism of imperatorin using liver microsomes. The metabolites were generated by individually incubating imperatorin with rat, dog, monkey, and human liver microsomes. To trap the reactive metabolites during microsomal metabolism, glutathione (GSH) was included in the incubation. A LC technique coupled with benchtop orbitrap MS with full mass/data-dependent tandem mass spectrometry acquisition mode was used to detect and identify the generated metabolites. The possible structures of the metabolites were characterized according to their accurate masses and fragment ions. Under the current conditions, a total of 10 metabolites, including four GSH adducts, were identified. The results indicated that imperatorin underwent extensive metabolic reactions including hydroxylation, oxidation, glucuronidation, and GSH conjugation. This study provides essential data on the metabolism of imperatorin, which will be helpful for us to understand the safety and efficacy of this bioactive compound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.