Abstract

We address the problems of detecting and counting various forms of regularities in a string represented as a straight-line program (SLP) which is essentially a context free grammar in the Chomsky normal form. Given an SLP of size n that represents a string s of length N, our algorithm computes all runs and squares in s in O(n3h) time and O(n2) space, where h is the height of the derivation tree of the SLP. We also show an algorithm to compute all gapped-palindromes in O(n3h+gnhlog⁡N) time and O(n2) space, where g is the length of the gap. As one of the main components of the above solution, we propose a new technique called approximate doubling which seems to be a useful tool for a wide range of algorithms on SLPs. Indeed, we show that the technique can be used to compute the periods and covers of the string in O(n2h) time and O(nh(n+log2⁡N)) time, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.