Abstract

Early diagnosis of mild traumatic brain injury (mTBI) is of great interest to the neuroscience and medical communities. Widefield optical imaging of neuronal populations over the cerebral cortex in animals provides a unique opportunity to study injury-induced alternations in brain function. Using this technique, along with deep learning, the goal of this paper is to develop a framework for the detection of mTBI. Cortical activities in transgenic calcium reporter mice expressing GCaMP6s are obtained using widefield imaging from 8 mice before and after inducing an injury. Two deep learning models for differentiating mTBI from normal conditions are proposed. One model is based on the convolutional neural network-long short term memory (CNN-LSTM), and the second model is based on a 3D-convolutional neural network (3D-CNN). These two models offer the ability to capture features both in the spatial and temporal domains. Results for the average classification accuracy for the CNN-LSTM and the 3D-CNN are 97.24% and 91.34%, respectively. These results are notably higher than the case of using the classical machine learning methods, demonstrating the importance of utilizing both the spatial and temporal information for early detection of mTBI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.