Abstract

As second-generation gravitational-wave detectors prepare to analyze data at unprecedented sensitivity, there is great interest in searches for unmodeled transients, commonly called bursts. Significant effort has yielded a variety of techniques to identify and characterize such transient signals, and many of these methods have been applied to produce astrophysical results using data from first-generation detectors. However, the computational cost of background estimation remains a challenging problem; it is difficult to claim a 5σ detection with reasonable computational resources without paying for efficiency with reduced sensitivity. We demonstrate a hierarchical approach to gravitational-wave transient detection, focusing on long-lived signals, which can be used to detect transients with significance in excess of 5σ using modest computational resources. In particular, we show how previously developed seedless clustering techniques can be applied to large data sets to identify high-significance candidates without having to trade sensitivity for speed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.