Abstract

We show that Earth mass planets orbiting stars in the Galactic disk and bulge can be detected by monitoring microlensed stars in the Galactic bulge. The star and its planet act as a binary lens which generates a lightcurve which can differ substantially from the lightcurve due only to the star itself. We show that the planetary signal remains detectable for planetary masses as small as an Earth mass when realistic source star sizes are included in the lightcurve calculation. These planets are detectable if they reside in the ``lensing zone" which is centered between 1 and 4 AU from the lensing star and spans about a factor of 2 in distance. If we require a minimum deviation of 4\% from the standard point-lens microlensing lightcurve, then we find that more than 2\% of all $\mearth$ planets and 10\% of all $10\mearth$ in the lensing zone can be detected. If a third of all lenses have no planets, a third have $1\mearth$ planets and the remaining third have $10\mearth$ planets then we estimate that an aggressive ground based microlensing planet search program could find one earth mass planet and half a dozen $10\mearth$ planets per year.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.