Abstract
Ship emissions contribute substantial air pollutants when at berth. However, the complexity and diversity of the marine fuels utilized hinder our understanding and mapping of the characteristics of ship emissions. Herein, we applied GC × GC-MS to analyze the components of marine fuel oils. Owing to the high separation capacity of GC × GC-MS, 11 classes of organic compounds, including b-alkanes, alkenes, and cyclo-alkanes, which can hardly be resolved by traditional one-dimensional GC-MS, were detected. Significant differences are observed between light (-10# and 0#) and heavy (120# and 180#) fuels. Notably, -10# and 0# diesel fuels are more abundant in b-alkanes (44~49%), while in 120# and 180#, heavy fuels b-alkanes only account for 8%. Significant enhancement of naphthalene proportions is observed in heavy fuels (20%) compared to diesel fuels (2~3%). Hopanes are detected in all marine fuels and are especially abundant in heavy marine fuels. The volatility bins, one-dimensional volatility-based set (VBS), and two-dimensional VBS (volatility-polarity distributions) of marine fuel oils are investigated. Although IVOCs still take dominance (62-66%), the proportion of SVOCs in heavy marine fuels is largely enhanced, accounting for ~30% compared to 6~12% in diesel fuels. Furthermore, the SVOC/IVOC ratio could be applied to distinguish light and heavy marine fuel oils. The SVOC/IVOC ratios for -10# diesel fuel, 0# diesel fuel, 120# heavy marine fuel, and 180# heavy marine fuel are 0.085 ± 0.046, 0.168 ± 0.159, 0.504, and 0.439 ± 0.021, respectively. Our work provides detailed information on marine fuel compositions and could be further implemented in estimating organic emissions and secondary organic aerosol (SOA) formation from marine fuel storage and evaporation processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International journal of environmental research and public health
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.