Abstract
Dynamics and mechanisms of the F- + CH3Br(v = 0) → Br- + CH3F (SN2 via Walden inversion, front-side attack, and double inversion), F- + inverted-CH3Br (induced inversion), HF + CH2Br- (proton abstraction), and FH⋯Br- + 1CH2 reactions are investigated using a high-level global ab initio potential energy surface, the quasiclassical trajectory method, as well as non-standard configuration- and mode-specific analysis techniques. A vector-projection method is used to identify inversion and retention trajectories; then, a transition-state-attack-angle-based approach unambiguously separates the front-side attack and the double-inversion retention pathways. The Walden-inversion SN2 channel becomes direct rebound dominated with increasing collision energy as indicated by backward scattering, initial back-side attack preference, and the redshifting of product internal energy peaks in accord with CF stretching populations. In the minor retention and induced-inversion pathways, almost the entire available energy transfers into product rotation-vibration, and retention mainly proceeds with indirect, slow double inversion following induced inversion with about 50% probability. Proton abstraction is dominated by direct stripping (evidenced by forward scattering) with CH3-side initial attack preference, providing mainly vibrationally ground state products with significant zero-pointenergy violation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.