Abstract
COVID-19 is one of the biggest pandemics that the world is facing today, and every day, we are coming up with new challenges in this area. Still, much research is already going on to overcome this pandemic, and we also get succeeded to some extent. Diverse sources such as MRI, CT scanning, blood samples, X-ray image, and many more are available to detect COVID-19. Thus, it can be easily said that through image processing, the classification of COVID-19 can be done. In this study, the COVID-19 detection is done by classifying with the use of a type of convolutional neural network termed a detail-oriented capsule network. Chest CT scan imaging for the prediction of COVID-19 and non-COVID-19 are classified in the present paper using a Detailed Oriented capsule network (DOCN). Accuracy, specificity, and sensitivity are parameters used for model evaluation. The proposed model has achieved 98% accuracy, 81% sensitivity, and 98.4% specificity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.