Abstract

An end-to-end development approach for space flight qualified additive manufacturing (AM) components is presented and demonstrated with a case study consisting of a system of five large, light-weight, topologically optimized components that serve as an engine mount in SpaceIL's GLPX lunar landing craft that will participate in the Google Lunar XPrize challenge. The development approach includes a preliminary design exploration intended to save numerical effort in order to allow efficient adoption of topology optimization and additive manufacturing in industry. The approach also addresses additive manufacturing constraints, which are not included in the topology optimization algorithm, such as build orientation, overhangs, and the minimization of support structures in the design phase. Additive manufacturing is carried out on the topologically optimized designs with powder bed laser technology and rigorous testing, verification, and validation exercises complete the development process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.