Abstract

The reaction of copper(II) nitrate trihydrate with N,Nʹ-cyclohexane-1,2-diylidene-bis(4-chlorobenzoylhydrazide) (LCl) in acetonitrile produced a mononuclear Cu(II) complex [CuII(TECl)2(NO3)2] (TECl: triazole-ester) (1). Triazole-ester is an intermediate compound formed during the oxidation of LCl by copper ion based on Cu(II) catalyzed click reaction. The organic ligand (LCl) and its complex (1) are characterized with different techniques. According to single crystal X-ray crystallography, complex 1 has been verified to possess a distorted square planar geometry and functions as a four-coordinate mononuclear copper(II) complex. Furthermore, the Cu(II) ion coordinates to the 1-N atoms of two monodentate (TECl) molecules, along with the N atoms of two monodentate nitrate ions. The optimization of geometry and other functional analyses was executed using density functional theory (DFT). Additionally, molecular electrostatic potential (MEP) and Hirshfeld surface analyses were conducted to scrutinize the reactive regions within the crystals. Employing molecular modeling software, the most suitable conformational bond between the prepared compounds (LCl and 1) and the urease enzyme is investigated to calculate the structure–activity relationship and binding energies. Moreover, comprehensive studies were performed on in vitro enzyme inhibition, pharmacokinetics, enzyme kinetic mechanism, and antimicrobial activity. These investigations revealed that the synthesized compounds exhibit a pronounced affinity for binding to the urease enzyme. Furthermore, the compounds demonstrate promising inhibitory potential against select bacterial strains and the urease enzyme, as evidenced by their MIC and IC50 values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.