Abstract

AbstractDesigning an optimum cell configuration that can deliver high capacity, fast charge–discharge capability, and good cycle retention is imperative for developing a high‐performance lithium–sulfur battery. Herein, a novel lithium–sulfur cell design is proposed, which consists of sulfur and magnesium–aluminum‐layered double hydroxides (MgAl‐LDH)–carbon nanotubes (CNTs) composite cathode with a modified polymer separator produced by dual side coating approaches (one side: graphene and the other side: aluminum oxides). The composite cathode functions as a combined electrocatalyst and polysulfide scavenger, greatly improving the reaction kinetics and stabilizing the Coulombic efficiency upon cycling. The modified separator enhances further Li+‐ion or electron transport and prevents undesirable contact between the cathode and dendritic lithium on the anode. The proposed lithium–sulfur cell fabricated with the as‐prepared composite cathode and modified separator exhibits a high initial discharge capacity of 1375 mA h g−1 at 0.1 C rate, excellent cycling stability during 200 cycles at 1 C rate, and superior rate capability up to 5 C rate, even with high sulfur loading of 4.0 mg cm−2. In addition, the findings that found in postmortem chracterization of cathode, separator, and Li metal anode from cycled cell help in identifying the reason for its subsequent degradation upon cycling in Li–S cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.