Abstract

Li‐free all‐solid‐state batteries can achieve high energy density and safety. However, separation of the current collector/solid electrolyte interface during Li deposition increases interfacial resistance, which deteriorates safety and reversibility. In this study, a reversible 3D porous anode is designed based on Li deposition behavior that depends on the pore size of the anode. More Li deposits are accommodated within the smaller pores of the Li hosting anode composed of Ni particles with a granular piling structure; this implies the Li movement into the anode is achieved via diffusional Coble creep. Surface modification of Ni with a carbon coating layer and Ag nanoparticles further increases the Li hosting capacity and enables Li deposition without anode/solid electrolyte interface separation. A Li‐free all‐solid‐state full cell with a LiNi0.8Mn0.1Co0.1O2 cathode shows an areal capacity of 2 mAh cm−2 for retaining a Coulombic efficiency of 99.46% for 100 cycles at 30 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.