Abstract

Organic synthesis reactions in the adsorbed phase have been recently an intensively studied topic in heterogeneous catalysis and material engineering. One of such processes is the Ullmann coupling in which halogenated organic monomers are transformed into covalently bonded polymeric structures. In this work, we use the lattice Monte Carlo simulation method to study the on-surface self-assembly of organometallic precursor architectures comprising tetrasubstituted naphthalene building blocks with differently distributed halogen atoms. In the coarse grained approach adopted herein the molecules and metal atoms were modeled by discrete segments, two connected and one, respectively, placed on a triangular lattice representing a (111) metallic surface. Our simulations focused on the influence of the intramolecular distribution of the substituents on the morphology of the resulting superstructures. Special attention was paid to the molecules that create porous networks characterized by long-range order. Moreover, the structural analysis of the assemblies comprising prochiral building blocks was made by running simulations for the corresponding enantiopure and racemic adsorbed systems. The obtained results demonstrated the possibility of directing the on-surface self-assembly towards networks with controllable pore shape and size. These findings can be helpful in designing covalently bonded 2D superstructures with predefined architecture and functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.