Abstract

The separation of light hydrocarbon mixtures (C1–C3) generated from petrochemical industry is vital and challenging process for obtaining valuable pure chemical feedstocks. In comparison to the energy intensive conventional separation technologies (cryogenic distillation, absorption and hydrogenation), the adsorptive separation is considered as a low energy cost and high efficiency process. Porous carbons have been demonstrated as excellent adsorbents for the separation of light hydrocarbons, owing to their designable structure and tailorable properties. This review summarizes the recent advances of using porous carbons as adsorbents for the separation of light hydrocarbons, including methane/nitrogen, methane/alkane, methane/carbon dioxide, ethylene/ethane and propylene/propane. We discuss the separation mechanisms and highlight the material features including pore structure, surface chemistry and target molecular properties that determine the separation performance. Furthermore, the challenges and development direction associated with carbonaceous adsorbents for light hydrocarbon separation are discussed, meanwhile the guidelines for the design of porous carbons are proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.