Abstract

A novel and facile strategy using poly(acrylic acid) (PAA) as a nanoreactor and template has been proposed and applied for the first time to fabricate a novel and unique class of multifunctional eccentric Fe3O4@PAA/SiO2 core-shell nanoclusters (NCs) consisting of a single Fe3O4 nanoparticle (NP), PAA, and eccentric SiO2 NCs that are composed of a large number of small fluorescent SiO2 NPs. Interestingly, the resulting eccentric PAA shell around Fe3O4 NPs as a high water-absorbent polymer is like a "reservoir" to absorb and retain water molecules inside its net structure to confine the growth of small SiO2 NPs inside the PAA networks, resulting in the formation of an eccentric SiO2 NC with aggregated pores. The thicknesses of uniform and well-dispersed SiO2 NCs can also be precisely controlled by varying the amount of tetraethyl orthosilicate (TEOS). Importantly, the synthetic method has been confirmed to be universal and extended to other functional NPs with different compositions and shapes as eccentric cores. Furthermore, the as-prepared multifunctional eccentric Fe3O4@PAA/SiO2 core-shell NCs combined fluorescence imaging, ultrahigh drug loading capacity (1.13 mg doxorubicin/mg eccentric NCs), and pH-responsive drug release into one were taken as an example to study the applications in simultaneous fluorescence imaging and pH responsive drug delivery into prostate cancer PC3M cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.