Abstract

Pathogenic bacteria have devastating impacts on human health as a result of acquired antibiotic resistance and innate tolerance. Every class of our current antibiotic arsenal was initially discovered as growth-inhibiting agents that target actively replicating (individual, free-floating) planktonic bacteria. Bacteria are notorious for utilizing a diversity of resistance mechanisms to overcome the action of conventional antibiotic therapies and forming surface-attached biofilm communities enriched in (non-replicating) persister cells. To address problems associated with pathogenic bacteria, our group is developing halogenated phenazine (HP) molecules that demonstrate potent antibacterial and biofilm-eradicating activities through a unique iron starvation mode of action. In this study, we designed, synthesized, and investigated a focused collection of carbonate-linked HP prodrugs bearing a quinone trigger to target the reductive cytoplasm of bacteria for bioactivation and subsequent HP release. The quinone moiety also contains a polyethylene glycol group, which dramatically enhances the water-solubility properties of the HP-quinone prodrugs reported herein. We found carbonate-linked HP-quinone prodrugs 11, 21-23 to demonstrate good linker stability, rapid release of the active HP warhead following dithiothreitol (reductive) treatment, and potent antibacterial activities against methicillin-resistant Staphylococcus aureus (MRSA), methicillin-resistant Staphylococcus epidermidis, and Enterococcus faecalis. In addition, HP-quinone prodrug 21 induced rapid iron starvation in MRSA and S. epidermidis biofilms, illustrating prodrug action within these surface-attached communities. Overall, we are highly encouraged by these findings and believe that HP prodrugs have the potential to address antibiotic resistant and tolerant bacterial infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call