Abstract

Targeted 2-pyridones were selected as tissue Factor VIIa inhibitors and prepared from 2,6-dibromopyridine via a multistep synthesis. A variety of chemical transformations, including regioselective nucleophilic addition, selective nitrogen alkylation, and a Suzuki coupling, afforded the targeted tissue Factor VIIa inhibitors. The pyridone core was selected as a replacement for the pyrazinone core of noncovalent tissue Factor VIIa inhibitors and designed such that their substitution pattern would occupy and interact with the S(1), S(2), and S(3) pockets of the tissue Factor VIIa enzyme. These compounds were tested in several serine protease enzyme assays involved in the coagulation cascade exhibiting modest activity on tissue Factor VIIa with excellent selectivity over thrombin and Factor Xa. Finally, an X-ray crystal structure of inhibitor 14a bound to tissue Factor VIIa was obtained and will be described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.