Abstract
In order to explore new scaffolds for large-conductance Ca2+-activated K+ channel (BK channel) openers, we carried out molecular design and synthesis on the basis of the following two concepts: (1) introduction of a heteroatom into the dehydroabietic acid (BK channel opener) skeleton would allow easier introduction of substituents. (2) Because of the fourfold symmetrical structure of BK channels, dimeric compounds in which two pharmacophores are linked through a tether are expected to have a greater binding probability to the channels, resulting in increased channel-opening activity. Herein, we explore the usefulness of the hexahydrodibenzazepinone structure as a new scaffold for BK channel openers. The synthesized monomer compounds of hexahydrodibenzazepinone derivatives, which can be derived from dehydroabietic acid, were subjected to electrophysiological patch–clamp studies, followed by Magnus contraction–relaxation assay using rabbit urinary bladder smooth muscle strips to assess overall activities. Dimeric compounds were designed by linking the monomeric hexahydrodibenzazepinone derivatives through a diacetylenebenzene tether, and their channel-opening activities were evaluated by electrophysiological methods. Finally, we concluded that the critical structure for BK channel-opening activity is the hexahydrodibenzazepinone monomer substituted with a phenyl-bearing alkynyl substituent on the lactam amide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.