Abstract

Several flexible and rigid analogs of 4H-1,2,4-triazoles (compounds 8a-g and 9a-g) bearing trimethoxyphenyl pharmacophoric unit, were designed and synthesized as potential anticancer agents. The in vitro cytotoxic assay indicated that both flexible and rigid analogs (8 and 9, respectively) can potentially inhibit the growth of cancerous cells (A549, MCF7, and SKOV3), with IC50 values less than 5.0 µM. Furthermore, compounds 10a-l as regional isomers of compounds 9 exhibited remarkable cytotoxic activity with IC50 values ranging from 0.30 to 5.0 µM. The rigid analogs 9a, 10h and 10k were significantly more potent than etoposide against MCF7, SKOV3 and A549 cells, respectively. These compounds showed high selectivity towards cancer cells over normal cells, as they had no significant cytotoxicity against L929 cells. In addition, the representative compounds 9a and 10h could inhibit the tubulin polymerization at micro-molar levels. By determining changes in the colchicine-tubulin fluorescence, it was suggested that compound 10h could bind to the tubulin at the colchicine pocket. The molecular docking study further confirmed the inhibitory activity of promising compounds 9a, 10h and 10k on tubulin polymerization through binding to the colchicine-binding site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.