Abstract

The inability of current battery technologies to keep up with the performance requirements of industry is pushing forward developments in electrochemistry. Specifically, the battery’s negative electrode, the anode, presents many unique chemical, physical and engineering challenges. Lithium-based battery technologies have dominated the past decade, but concerns about the limited supply of lithium in the Earth’s crust have led researchers to look towards alternative metal-ion technologies. Various alkali metals (such as sodium and potassium) and alkali earth metals (such as magnesium and calcium) have attracted significant research interest. In this Review, we analyse these technologies in a coherent manner, addressing the problems of each type of anode, rather than those of specific types of metal-ion batteries. Covering direct metal plating and stripping, intercalation-based, alloy-based and conversion-reaction-based anode technologies, this analysis will offer the reader a comprehensive understanding of the behaviour of different metal-ion anodes and of what can be learned by transferring knowledge between these different systems. Increasing demand for energy-storage systems will inevitably stress the Earth’s lithium supply; thus, the research focus is shifting towards other alkali and alkali earth metals. This Review compares and connects strategies to enable different multivalent and monovalent metal-ion battery anodes, including metal anodes and intercalation-based, alloy-based and conversion-reaction-based anodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.