Abstract

This paper analyses the design sensitivity of a suspension system with material and geometric nonlinearities for a motorcycle structure. The main procedures include nonlinear structural analysis, formulation of the problem with nonlinear dynamic response, design sensitivity analysis, and optimization. The incremental finite element method is used in structural analysis. The stiffness and damping parameters of the suspension system are considered as design variables. The maximum amplitude of nonlinear transient response at the seat is taken as the objective function during the optimization simulation. A more realistic finite element model for the motorcycle structure with elasto-damping elements of different material models is presented. A comparison is made of the optimum designs with and without geometric nonlinear response and is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.