Abstract

Relaxin-3 (also known as INSL7) is a recently identified neuropeptide belonging to the insulin/relaxin superfamily. It plays a putative role in the regulation of food intake, in the stress response and in reproduction by activating the G-protein-coupled receptor, RXFP3. In a previous study, we prepared 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)/Eu(3+)-labelled human relaxin-3 as a tracer for the study of ligand-receptor interactions, which necessitated a complicated site-specific labelling strategy because human relaxin-3 contains four primary amine moieties, all of which react with the primary amine-specific modification reagent. To simplify the labelling procedure, in the present study we created an easily labelled, recombinant analogue of human relaxin-3 with only one primary amine moiety at the A-chain N-terminus. The analogue retained full activity and could be easily labelled by various functional probes at the A-chain N-terminus. The DOTA/Eu(3+)-labelled analogue retained high binding affinity for its cognate receptor, RXFP3, and thus represents a useful, nonradioactive and stable tracer for studying the interaction of RXFP3 with various natural or synthetic ligands. This new analogue is also a suitable template for the design of other relaxin-3 analogues that can be easily labelled with the DOTA/Eu(3+) moiety and used to study binding activity and interactions with various RXFP3 analogues in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.